Clitony and Irreversible Inflammatorical Management of a First Upper Molar with Invasive Cervical Resorption Pulpitis

By Prof. Dr. Leandro A. P. Pereira

External cervical tooth resorption is characterized by an irreversible loss of dentin tissue due to the action of odontoocytes (Patiel et al. 2007). It may also be called invasive cervical resorption (ICR). It is an inflammation of the tissues supporting the tooth. Initially, there is no pulp involvement (Mavridou AM, Pyka G, Kerdokis G, et al. 2016). Generally, this type of resorption begins immediately below the union epithelium in the cervical region of the tooth. While there is no bacterial invasion in the pulp cavity, the pulp’s vitality is maintained. Thus, the pre-dentin layer will be present.

The ICR does not progress into the pulp cavity possibly due to the presence of inhibitory factors in this pre-dentin layer (Wedenberg 1987, Mavridou AM, Pyka G, Kerdokis G, et al. 2016). Its diagnosis and treatment are not always easy and the prognosis depends on the location and degree of severity of the lesion when diagnosed.

Several etiological factors may be involved in ICR. These include the following:

- Physical: dental trauma, surgical procedures, orthodontic movements, periodontal scaling and bruxism (Heithersay 1999).

- Anatomical variation: the type of cemento-enamel junction seems to play a key role in external cervical resorption. In 16% of teeth, there is no juxtaposition of the sealing to the enamel (Schröeder & Scherle 1988). Thus, an area of the dentin has no sealing or enamel (CVEK & Lindwall 1985, Neuvial and Consolaro 2000). This dentin exposure is a risk factor for the development of ICR (Neuvial and Consolaro 2000).

- In cases where the cemento-enamel junction is not continuous, physical and/or chemical irritants can cause damage to the bone and dentin. This aggression may lead to biochemical changes in the affected tissues, leading to the formation of multinucleated giant cells. These cells are elastic cells. In these clinical situations, they may act by reabsorbing the dentin. In the reabsorption process, monocytes and macrophages are present, as well as complex enzymatic and hormonal events.

Cervical resorption begins on the outer surface of the root and progresses toward the pulp. However, when it still presents vitality, the pre-dentine layer is maintained and the ICR does not invade the pulp cavity. This effect is due to the pre-dentin layer containing organic and mineralized tissue, changes the direction of resorption progression by making it settle circumferentially to the pulp cavity (Fig. 4-7).

The diagnosis of ICR can be performed by clinical examination when it is in a more advanced stage, allowing its direct visualization. Clinically, at the beginning of the process, the tooth condition is asymptomatic since no pulp pathologic changes are involved. In these cases, diagnosis by image is the most effective method. For this reason, direct visual clinical diagnosis is not possible in the early stages. Imaging examinations such as periapical radiographs and/or CT scans are efficient methods of diagnosis. Among these, the conical beam tomography is more accurate than the periapical radiography (Patiel et al. 2016, Vaz de Sousa D et al 2017).

The treatment of ICR aims to protect the affected dentin from exposure to the patient’s immune system. For this, cleaning the affected area and restoring the cavity with biocompatible material is the intended treatment. As these areas are in direct contact with tissue and saliva fluids, they are wet and irregular due to the destructive aspect of the resorption process. Therefore, the material of choice for the closure of this cavity, besides being biocompatible, must be able to fill irregular cavities and have good physicochemical behavior in a wet environment.

Throughout the history of dentistry, several materials such as resins, amalgam, resin-modified glass ionomers, hydroxyapatite, and endodontic sealers were used for this purpose. However, none of these presented desirable characteristics and results. Only bioerodible materials have the desirable characteristics for this purpose. Among bioerodible materials, MTA is the most used material and has the highest scientific evidence of its results (Pitt Ford et al 1996, Torabinejad & Parikh 2010).

Clinical Case

A 52-year-old female patient, ASA I, came to the clinic with complaints of spontaneous pain exacerbated by hot and cold foods in the right maxilla. On clinical examination, tooth 16 responded to thermal tests with high intensity, pulsating pain and taking long to cease. She did not present positive responses to lateral and vertical percussion tests, nor to apical palpation. The clinical diagnosis was symptomatic irreversible pulpitis with normal periapex. In addition, a radiolucence image was visualized on the radiographic examination involving the cervical and coronal region of tooth 16, leading to the suspicion of a Cervical Invasive Resorption (Fig. 1-3). In order to have a confirmation of the diagnosis and assess the extent of the lesion, a concomitant computed tomography scan was performed.

In the tomography, we could observe the three-dimensional extension of the ICR around the pulp cavity. As previously described, the ICR does not invade the pulp cavity when the pulp is alive due to the presence of the pre-dentin layer. This imaging characteristic is present in cases of external dental resorption where the pulp is still alive with consequent preservation of the pre-dentin non-mineralized layer (Fig. 4-7).

The endodontic treatment was performed according to the pulpal diagnosis. However, a complementary approach was required in the resorption area (Fig. 8). The marked curvature of the mesial root led to the selection of a reciprocating nickel-titanium instrument with shape memory control (Reciproc Blue - VDW) for mechanical preparation.

After accessing the pulp chamber, 5 ml of sodium hypochlorite were used for initial irrigation (Fig. 9). Afterwards, a Reciproc Blue 25 instrument was progressively introduced into each of the canals, in cycles of 3-5 minutes and following outgoing movements in the canals followed by irrigation of 1 ml Hypochlorite between each cycle, until they reached 2/3 of the radiographic length of the tooth. At this time, the actual working length was established using an electronic file ramamal locator. Subsequently, the Reciproc Blue 25 instrument was taken to the working length. With a Reciproc Blue 40 instrument, the diameter of the apical preparations was increased (Fig. 10).

Immediately after, the Rootchambers were filled with Reciproc Blue 40 (Fig. 11). After completing the filling, the radiographic examination confirmed the ICR area and Location (Fig. 12).

The coronal access was performed according to the pulpal diagnosis. As these areas are in direct contact with tissue and saliva fluids, they are wet and irregular due to the destructive aspect of the resorption process. Therefore, the material of choice for the closure of this cavity, besides being biocompatible, must be able to fill irregular cavities and have good physicochemical behavior in a wet environment.

In the tomography, we could observe the three-dimensional extension of the ICR around the pulp cavity. As previously described, the ICR does not invade the pulp cavity when the pulp is alive due to the presence of the pre-dentin layer. This imaging characteristic is present in cases of external dental resorption where the pulp is still alive with consequent preservation of the pre-dentin non-mineralized layer (Fig. 4-7).

The endodontic treatment was performed according to the pulpal diagnosis. However, a complementary approach was required in the resorption area (Fig. 8). The marked curvature of the mesial root led to the selection of a reciprocating nickel-titanium instrument with shape memory control (Reciproc Blue - VDW) for mechanical preparation.

After accessing the pulp chamber, 5 ml of sodium hypochlorite were used for initial irrigation (Fig. 9). Afterwards, a Reciproc Blue 25 instrument was progressively introduced into each of the canals, in cycles of 3-5 minutes and following outgoing movements in the canals followed by irrigation of 1 ml Hypochlorite between each cycle, until they reached 2/3 of the radiographic length of the tooth. At this time, the actual working length was established using an electronic file ramamal locator. Subsequently, the Reciproc Blue 25 instrument was taken to the working length. With a Reciproc Blue 40 instrument, the diameter of the apical preparations was increased (Fig. 10).

The coronal access was performed according to the pulpal diagnosis. As these areas are in direct contact with tissue and saliva fluids, they are wet and irregular due to the destructive aspect of the resorption process. Therefore, the material of choice for the closure of this cavity, besides being biocompatible, must be able to fill irregular cavities and have good physicochemical behavior in a wet environment.

In the tomography, we could observe the three-dimensional extension of the ICR around the pulp cavity. As previously described, the ICR does not invade the pulp cavity when the pulp is alive due to the presence of the pre-dentin layer. This imaging characteristic is present in cases of external dental resorption where the pulp is still alive with consequent preservation of the pre-dentin non-mineralized layer (Fig. 4-7).

The endodontic treatment was performed according to the pulpal diagnosis. However, a complementary approach was required in the resorption area (Fig. 8). The marked curvature of the mesial root led to the selection of a reciprocating nickel-titanium instrument with shape memory control (Reciproc Blue - VDW) for mechanical preparation.
Certificate & Diploma in Clinical Endodontics

From British Academy of Restorative Dentistry

DUBAI دبی 2019-2020

Group 3 Registration Open Pathway to UK Masters 168 CME & Daily Hands-on

Certificate | 3 Modules | 12 Days
Module 1 | 21-24 March 2019 | Fundamental of Endodontics
Programme outline: Introduction to contemporary endodontics. Understanding of instrument design and its effect on prevention of iatrogenic errors.
Hands-on: Hand filing and lateral compaction techniques.

Module 2 | 19-22 June 2019 (4 days) | Aetiology and Diagnosis of Endodontic Disease
Programme outline: Microbiology of endodontic disease and its relationship with the host immune response.
Hands-on: Rotary NiTi and thermoplastic obturation techniques.

Module 3 | 12-15 September 2019 (4 days) | Traumatic Injury, Pain and its Management
Programme outline: Emergency endodontics and diagnosis in depth. Odontogenic and non-odontogenic pain. Diagnosis and management.
Hands-on: Rotary Niti and advanced thermoplastic obturation techniques.

Diploma | 3 Modules | 12 Days
Module 4 | December 2019 (4 days) | Dental Resorption and Pattern of Tooth Fracture & Implant Prosthodontics
Programme outline: Understanding advanced endodontic problems. Handling endodontic failure alternatives related to implants.
Hands-on: Reciprocating Niti and Carrier based thermoplastic obturation techniques & Implant prosthetic and surgery on phantom heads

Module 5 | March 2020 (4 days) | Restoration of Endodontically Treated Teeth
Hands-on: Placement of core restorations and post retained restorations.

Module 6 | June 2020 (4 days) | Management of Endodontic Failure
Programme outline: Endodontic retreatment, surgical endodontics.

+971 528423659 | p.mollov@cappmea.com
www.cappmea.com/endo
In the resorption region, an intra-coronal (non-surgical) sealing approach was chosen. This choice was made due to the small extent of the area of communication between the resorption and the external dental surface (FIGURE 10). For sealing the resorption area including the communication between the external/internal surface, the material of choice was MTA-HP and not the conventional MTA. As the conventional MTA contains Bismuth Oxide as radiopacifier, it may lead to a darkening of the tooth crown when used near the cervical region or in the dental crown. Bismuth Oxide may react with the dentin collagen, causing a graying of the dental structure (Marciano MA et al 2014). This color alteration may also occur due to the interaction between Bismuth Oxide and Sodium Hypochlorite (Camilleri et al 2014). Thus, using bioceramic materials containing Bismuth Oxide as a radiopacifier should be avoided.

With the concern for preserving the aesthetics of the clinical cases treated with bioceramic materials, new formulations of these materials have been proposed by the industry. As an example, MTA HP Angelus has Calcium Tungstate as radiopacifier. This new formulation does not lead to chromatic changes in dental structure (Marciano MA et al 2014). Thus, HP MTA can be used in areas close to the tooth crown without the chromatic impairment of the treated tooth. Furthermore, the addition of an organic plasticizer to the liquid component of this new material significantly improved its clinical management. As this clinical case involves the placement of bioceramic material near the coronal cervical area of tooth 16, we chose MTA HP to preserve the original color of the tooth (Fig. 12). In the 8 month clinical control it is possible to observe the maintained natural color of the original color of the tooth (Fig. 15) as well as the normality of the periapical tissues (FIGURE 14-15).

Conclusion

Invasive cervical resorptions are pathologies of immunological character. When early diagnosed, where the extent of tooth destruction is still small and easily accessible, the prognosis is favorable. Bioceramic repair materials are indicated to seal the communication between the endodontium and the external surface of the root. As invasive cervical resorptions involve anesthetic areas, bioceramic materials containing Bismuth Oxide should be avoided because they cause chromatic changes in the crown of the impaired tooth. Therefore, traditional MTAs are not indicated in these cases. However, new formulations of MTA such as MTA HP do not contain Bismuth Oxide. This characteristic does not lead to changes in tooth color. Hence, this is the most suitable material for sealing these areas of resorption.

References

THE SAME EFFICIENCY WITH BETTER PLASTICITY

MTA Repair HP

Bioceramic high-plasticity reparative cement

- Formula with P.A. raw material: No contaminants or heavy metals
- High plasticity: Better handling and insertion
- Bismuth-free: Does not stain the dental structure
- Release of Ca ions: Induces remineralization
- High alkalinity: Prevents bacterial growth
- Single doses: Optimizes the time and the use

Dental Tribune Middle East & Africa Edition | 3/2018